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1. Introduction

Contemporary simulations of full QCD on the lattice typically use two degenerate light

flavors (’up’ and ’down’) and one heavier flavor (’strange’) of sea quarks. For each flavor the

fermionic determinant is replaced by an integral over bosonic fields φ, the pseudofermions [1]

det D ∝
∫

[dφ†][dφ]e−φ† 1

D
φ . (1.1)

This identity requires all eigenvalues of the matrix D to have a positive real part.

Most lattice Dirac operators obey γ5-Hermiticity, D† = γ5Dγ5, and so detD is real.

However, the eigenvalues of lattice Dirac operators are typically complex and their real

parts may not be positive-definite. Then the exponential in eq. (1.1) cannot be interpreted

as a conventional probability measure. This is the case for Wilson fermion actions. They

have eigenvalues that are paired complex-conjugates or unpaired and real:

det D =
∏

pairs

(|λj |2 + m2)
∏

r

(λr + m) . (1.2)

The absence of chiral symmetry means that the sign of the real eigenvalues is not protected,

so the determinant can have either sign. The solution to this problem is to simulate two

degenerate flavors at a time, that is, to rewrite their fermion determinant det2 D = detD†D

where D†D fulfills the requirements of eq. 1.1. So eq. 1.2 becomes

detD†D =
∏

i

(|λi|2 + m2)
∏

r

(λr + m)2 . (1.3)

where the product index i runs over all modes. Simulations of a single flavor are, in general,

not as straightforward, and one is forced to use either the Refreshed Molecular Dynamics

or R algorithm [2], which is not exact, or the Rational Hybrid Monte Carlo (RHMC)

algorithm [3], which uses the square root of the two flavor operator, Q =
√

D†D. This

could introduce a systematic error if λr + m could change sign.
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For the overlap Dirac operator [4, 5] there is a more natural solution. It exploits the

chiral properties of the formulation, i.e. that the eigenmodes of D†D can be chosen to be

chiral, with an eigenmode of each chirality per eigenvalue |λi|2 + m2. A single flavor of

overlap fermions can be simulated with one chiral pseudofermion. One only has to correct

for the effect of the real modes. The real spectrum is known if one knows the topological

charge of the configuration as defined by the index of the Dirac operator. The idea is based

on a suggestion which can already be found in ref. [6] but shall now be formulated and

investigated more precisely.

A simulation of any number nf of flavors thus involves a set of nf chiral pseudo-

fermion fields. It is also necessary to keep track of the global topology of the configuration

during the simulation. Besides allowing simulations for any nf , the chiral algorithm has an

advantage over the traditional “non-chiral” Hybrid Monte Carlo (HMC) algorithm (with

a Dirac spinor pseudo-fermion for each degenerate flavor pair): Away from topological

boundaries, or in simulations in which topological changes are forbidden, it can eliminate

part of the critical slowing down in the chiral limit and stabilize the inversion in sectors of

non-trivial topology. This is achieved simply by running in the sector of chirality which is

topologically trivial.

In section 2 we describe the method. The new ingredient, not mentioned in ref. [6], is a

technique for generating the initial chiral pseudofermion. In section 3 we present results of

some test simulations in small volumes. Some of these results are surprising, so in section 4

we describe a little solvable model which reproduces these features.

2. The method

Let us first fix our conventions and repeat a few properties of Neuberger’s overlap operator.

It is given by

D = Dov(m = 0) = R0 [1 + γ5ε(h(−R0))] (2.1)

with ε(h) = h/
√

h2 the sign function of the Hermitian kernel operator h = γ5d which is

taken at the negative mass R0. Its spectrum is symmetric, i.e. each non-real eigenvalue λ is

paired with its complex conjugate λ∗. The modes at zero and 2R0 are the only real modes.

They are chiral and the excess of the zero modes of negative chirality over the ones with

positive chirality gives the topological charge Q. Experience shows that there are always

only zero modes of one chirality. For simplicity of the argument we will assume this in the

following even though this assumption is not necessary. The squared Hermitian overlap

operator H2 = (γ5D)2 = D†D commutes with γ5 and therefore can have eigenvectors with

definite chirality. The modes at zero and 4R2
0 aside, the spectrum is doubled with a positive

and a negative chirality eigenvector to each eigenvalue |λ|2. It is therefore convenient to

define the chiral projections (P± = 1
2(1±γ5)) so that the massive squared Hermitian overlap

operator, with the usual convention for the mass terms, is

H2
±(m) = P±H2(m)P± = 2

(

R2
0 −

m2

4

)

P±(1 + ε(h))P± + m2P± . (2.2)

– 2 –
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Let us call the chiral sector without the zero modes the sector of opposite chirality and

the associated Hermitian Dirac operator H2
opp. The chiral sector with the chirality of the

zero modes shall be called the same chirality sector and H2
same the associated operator.

The method which we are going to discuss exploits the fact that H2 has the same

spectrum in both chiral sectors. Only the modes at m2 and 4R2
0 differ. The fermion

determinant for one flavor is therefore the determinant of H2 in one chiral sector times a

correction factor for the modes at m and 2R0. This is summarized in the following relation

detD = (m/2R0)
|Q|detH2

opp = (2R0/m)|Q|detH2
same . (2.3)

Since H2
opp and H2

same are positive operators, it is thus straightforward to simulate a single

flavor in hybrid Monte Carlo.

First, however, one has to decide which action to simulate, i.e. how to choose the

optimal chirality for the pseudofermion a given gauge configuration. To begin, for any

configuration with topological charge, the inversion of the Dirac operator is computationally

cheaper in the sector of opposite chirality. Typically, the non-zero modes are repelled by the

zero mode(s) and the smallest non-zero mode is significantly above zero. The conditioning

number of the Dirac operator (the ratio of largest to smallest eigenvalue) is therefore

lower in the opposite chirality sector because the largest eigenvalue is always close to 2R0

regardless of chirality. (For H(m)2 it is proportional to 1/(m2 + λ2
min).)

During the molecular dynamics evolution the topological charge can change. One has

to decide what to do when the chirality of the zero-modes flips (e.g. starting in a trajectory

in a configuration with Q = 1 and evolving through a region with Q = 0 into Q = −1).

There are in principle two options: One can keep the chirality of the operator to be fixed,

or one can choose the chirality of the operator to be in the opposite chirality sector of the

configuration. This means that when one changes the topology of the configuration, one

also changes the chirality of the pseudofermion. The associated action is given by

detD = (m/2R0)
|Q|detH2

opp ∝
∫

[dφ][dφ†] exp

(

|Q| log m

2R0
− φ†H−2

oppφ

)

. (2.4)

To simulate this action we use the Hybrid Monte Carlo algorithm. We build on experi-

ences previously published in refs. [7 – 9]. The initial formulation of the HMC algorithm [10]

for the overlap operator is given in ref. [11]. At the start of a trajectory, one has to perform

a heat-bath for the pseudo-fermion fields. In a conventional nf = 2 simulation, one would

cast a random vector ξ in both chiralities and compute φ = Hξ. Then one would break φ

into its separate chiralities and use

det D2 =

∫

[dφ+][dφ†
+][dφ−][dφ†

−] exp(−φ†
+H−2

+ φ+ − φ†
−H−2

− φ−). (2.5)

However, we need a set of chiral φ fields, of chirality σ, chosen by heat bath. (How to

do this is not described explicitly in ref. [6].) We achieve this goal by generating a set of

chiral Gaussian random fields ξσ. We then define φσ =
√

H2
σξσ. To construct φσ we use

a rational approximation to the square root in the region [m2, 4R2
0], i.e. we approximate it

– 3 –
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by
√

H2
σξσ ≈ H2

σ

∑

l

bl

H2
σ + cl

ξσ (2.6)

where we use the bl and cl from the Zolotarov approximation to the sign function (there

used to compute ε(x) = x/
√

x2).

When we use Hasenbusch preconditioning [12], the action for the lower mass pseud-

ofermions is

Sf = φ†
σ

Hσ(m′)2

Hσ(m)2
φσ. (2.7)

Our chiral pseudofermion is then taken to be
√

Hσ(m)2/Hσ(m′)2ξσ, which we again ap-

proximate by a Zolotarov formula, whose independent variable x obeys

x−1 = Hσ(m′)2/Hσ(m)2 = α + β/Hσ(m)2. (2.8)

The range of x is (m/m′)2 to 1.

During the trajectory one has to deal with the discontinuity due to the sign function

in the definition of the overlap operator, when an eigenmode |λ0〉 of the kernel operator

h(−R0) changes sign. Fodor et al. [11] proposed a method of how to deal with this problem.

One measures the height of the step in the effective action and then reflects or refracts the

gauge field momentum as in classical mechanics. The computation of the height of the step

is a major part of the total cost of the simulation. If we use the same chirality of Hσ on

both sides of that boundary this amounts to the change

H2
σ(m) −→ H2

σ(m) ± (4R2
0 − m2)Pσ|λ0〉〈λ0|Pσ ≡ H̃2

σ(m) . (2.9)

From the Sherman-Morrison formula,

1

H̃2
σ(m)

=
1

H2
σ(m)

− δC

1 + δCL

1

H2
σ(m)

Pσ|λ0〉〈λ0|Pσ
1

H2
σ(m)

, (2.10)

so the height of the step is given by

∆

[

〈φ|Pσ
1

H̃σ(m)2
Pσ|φ〉

]

= − δC

1 + δCL
|〈φ|Pσ

1

Hσ(m)2
Pσ|λ0〉|2 . (2.11)

Finally, for completeness, the exact ratio of determinants is

det H̃2
σ(m)

detH2
σ(m)

= 1 + δCL. (2.12)

In the abbreviated formulas δ is the sign in eq. 2.9, C = (4R2
0 − m2) and L is the matrix

element 〈λ0|PσH−2
σ (m)Pσ |λ0〉.

eq. 2.11 is obviously only applicable if we use the same chiral sector on both sides.

Otherwise, one has to run the inversion twice, which is very expensive and numerically less

under control. This will occur during crossings into Q = 0. Technically, a change in the

chirality which we are using for H2
σ amounts to a change in the chirality which we use for

– 4 –
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the embedding of the two-component chiral source into the four-component Wilson vector.

We will therefore use the term source chirality for chirality of H2.

Since choosing the chirality which we use in the Q = 0 sector depending on the

configuration we start the trajectory from would violate reversibility, we choose it randomly

at the beginning of each trajectory. So at a topological boundary, where we propose a

tunneling into Q = 0, the new source chirality will be different from the initial chirality

half the time. The ∆S which results from flipping the source chirality is very large and

most of these crossings will be rejected. This suggests two other algorithms for simulating

any number of flavors:

• Simply restrict the simulation to a particular topological sector. There are simu-

lational situations where this restriction is desirable. They include the calculation

of the condensate using random matrix theory, or calculations of full QCD in the

so-called epsilon regime. It is unknown whether these simulations are ergodic. If the

manifold of gauge fields corresponding to fixed topology were smoothly connected,

then HMC would (in principle) carry us from any gauge configuration to any other

one by a series of small steps. However, if sectors of fixed topology were disjoint, or

could be connected only by passage a sector of some other topological charge, HMC

in a sector of fixed topology would not be ergodic. We are aware of no proofs one

way or the other, for four dimensions. Arguments we construct based on instanton

phenomenology, where Q counts the excess of instantons over anti-instantons, argue

that there is no problem: in the different configurations, the location of the odd

instanton(s) moves around, and their sizes shrink and grow, but this is all continu-

ous. So is the appearance of pairs of instantons and anti-instantons, as they grow

from fluctuations of a single plaquette, or annihilate similarly. To produce the entire

functional integral, results from different topological sectors can be combined using

eq. 2.12, as described by ref. [13].

• Alter the tunneling probability and reweight the resulting data set, if necessary. A

simple way to do this is to pick all chiral sources to carry the same chirality and

begin the simulation either in Q = 0 or in a topological sector in which the sources

do not have zero modes. Here we must assume that configurations with zero modes

in both chiralities never appear. Then allow topological changes in which the sources

do not have zero modes, but prohibit transitions which would create zero modes in

the source chirality. For example, we could set the source chiralities to be positive

and only allow transitions into Q = n− − n+ ≥ 0. (We will call this the “fixed

chirality algorithm.”) Unless there are disconnected sectors at Q 6= 0 which can

only be reached by some passage through Q < 0 (for example Q = 1 → Q = 0 →
Q = −1 → Q = 0 → Q = 1 → Q = 2) the algorithm will generate an ensemble

with the correct Boltzmann weighting ratio between sectors of all Q ≥ 0. Under a

parity transformation a gauge configuration with positive Q is converted into one

with negative Q. In the analysis of an ensemble generated with this algorithm,

measurements on the Q = 0 configurations need to be reweighted with a factor 1/2

compared to those from configurations with non-trivial topology.

– 5 –
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At a topological boundary we add ∆|Q| log(m/(2R0)) to the pseudofermion ∆S before

deciding whether to reflect or refract. As a variant on this approach (which we have

not tried) one could leave out a fraction of the |Q| log(m/(2R0)) factor from the

action during the HMC evolution and include it later with a real reweighting.

3. QCD simulations

We make tests on four different data sets: Set A is generated with the standard two-flavor

HMC algorithm on an 83×6 lattice, at a lattice spacing of a ≈ 0.16 fm and a bare quark mass

of am = 0.05. This is close to the crossover between the chirally broken low temperature

phase and the chirally restored high temperature phase. The details of this simulation

and its parameters are similar to those discussed in ref. [8]. We only mention that our

gauge connections are stout links [14] and that we use Hasenbusch preconditioning [12]

with one extra pair of pseudo-fermion fields at a higher mass. Here we use three levels of

stout smearing. The molecular dynamics integration has a multiple time step integration

similar to that of ref. [15]. Set A′ is run at the same parameters but using the new chiral

algorithm. Set B is generated with the fixed chirality algorithm. We restrict these studies

to nf = 2 because we can make comparisons to the usual (nonchiral) HMC algorithm. (We

have also done extensive running with nf = 1, which we will report elsewhere.)

Finally, we have run the new algorithm to generate sets (labeled C) of 104 lattices at the

same lattice spacing as sets A and A′, with two steps of stout smearing, at fermion masses

of amq = 0.05, 0.03 and 0.015. These simulations are done in sectors of fixed topology

by switching off the possibility of refraction. This allows us to study the behavior in the

different topological sectors. Otherwise, in particular at small quark masses, the fermion

determinant suppresses the sectors of non-zero topology and it is hard to get sufficient

statistics there.

We check that our starting pseudofermion field is chosen appropriately by computing

φ†
σHσ(m)−2φσ (or when we use Hasenbusch preconditioning, φ†

σH2
σ(m′)Hσ(m)−2φσ) and

comparing this value to the heat bath initialization ξ†σξσ. With high accuracy evaluations

of the Zolotarov formula and a tight convergence criterion for the Conjugate Gradient

inversion of the quark propagator (r†r = 10−16), the deviation in the action from its heat

bath value is held below 0.02 or so, out of a total fermion energy in our simulations of a

few times 105. This is small compared to the typical violation of energy conservation in

our molecular dynamics trajectory.

Let us turn to the critical slowing down and the cost of the inversion (we do not

make statements about the auto-correlation time because our data set is too small to make

a definite statement). The new method has an overhead at the start of the trajectory

because one has to hit the Gaussian source with the square root, which involves a multi-

mass inversion of the overlap operator, instead of just the operator H. However, this is

only a small fraction of the total cost of the algorithm.

Since the simulation for set C is done in a fixed topological sector, we have significant

statistics for the Q = ±1 sector for smaller quark masses. We can thus study the critical

slowing down of the inversion at trivial and non-trivial topology. For all three quark masses

– 6 –
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we found no significant difference in the cost of the inversion between the Q = 0 and the

Q = ±1 runs. At fixed topology, the variation of the number of CG steps for the three

different bare quark masses (am = 0.015, 0.03 and 0.05) is below 20%. We can conclude

(at least for the small volumes and for our parameters) that critical slowing down is largely

eliminated by the chiral algorithm.

The other algorithms allow for topological changes. We made simulation runs of 250-

300 trajectories for each algorithm. We observed that the plaquettes from all simulations

were consistent within uncertainties. In all three runs we had tunnels from Q = 0 into and

out of |Q| = 1. The tunneling rate was too low in all three simulations to say anything

meaningful about autocorrelation times. All three runs used the same parameters. All had

acceptance rates of about 90 per cent. All had about 1.8 attempted topological changes

per trajectory. The cost of a trajectory in units of the number of applications of H2
σ to a

trial vector were 2430(23) for set A, 2798(47) for A′, and 2221(17) for B. The excess of

A′ over A is due to the startup. The decrease of B from A is from the modest decrease in

the conditioning number because we never run in a topologically nontrivial sector.

The algorithm refracts when ∆S, the change in action, is smaller than 1
2〈N |π〉2, the

squared projection of the gauge momentum normal to the surface of topology change. We

first show a histogram of 〈N |π〉2 in figure 1. As expected there is little difference in this

quantity between the algorithms.

Next we look at ∆S and show histograms of this quantity in figure 2. These distribu-

tions are quite different. To make sense of them, we realize that while for the nonchiral

algorithm all crossings are “similar,” in the sense that all transitions involve contributions

from zero modes in either the initial or final state, that is not the case for the chiral al-

gorithms: either the transition involves a change in topology in which the zero mode has

appeared or disappeared from the opposite chirality sector, or in the same sector as the

simulation. In the case of an opposite chirality change, the magnitude of the topology can

either increase or decrease.

In figure 3 we further divide the contributions to figure 2b and show histograms of

∆S from algorithm A′ for two cases. In panel (a) we show ∆S from transitions when the

running chirality is different from the topology of the proposed crossing. This histogram

itself has two components, a narrow one and a wide one, which we will shortly separate.

In panel (b) we show ∆S for transitions in which the final topology and the running

topology have the same sign. In this algorithm we compute the action in the new sector

by flipping the pseudofermion chirality. This gives a very noisy estimator for ∆S, with a

large mean and deviation.

Changes “up” (Q = 0 → Q = 1) and “down” (Q = 1 → Q = 0) for the fixed

chirality algorithm (data set B) are illustrated in figure 4. These distributions are also

quite asymmetric. A breakdown of figure 3a would duplicate this figure.

The common feature of these plots is that the distribution of ∆S is large and wide

when the lowest eigenvalue of H2 would shrink if the topology changed, and is small and

narrow when the eigenvalue would grow. The lowest eigenvalue in the same-chirality sector

shrinks when a zero mode appears. In the opposite-chirality sector, when the magnitude

– 7 –
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Figure 1: Histograms of 〈N |π〉2, the squared normal component of the gauge momentum at a

topological boundary, from the non-chiral algorithm A (a), the chiral algorithm A′ (b), and the

fixed chirality algorithm B (c).

of the topological charge increases the smallest eigenvalue also increases, and when the

magnitude of |Q| drops, so does the smallest eigenvalue.

This is most apparent in figure 4. The distribution is wide in figure 2a because when

we attempt to tunnel out of Q = 0, a near-zero mode appears in the spectrum. Figure 3a

contains many low ∆S values (Q = 0 to Q = 1) and a few high values (Q = 1 to Q = 0) as

in figure 4. The two components in figure 2b are a narrow one for transitions from Q = 0

to Q = 1 with Q = −1 sources and a wider one, one for Q = 1 to Q = 0 transitions. This

second component has a contribution in which the Q = 0 sector’s chirality is flipped. We

don’t have enough data from the chiral algorithms for transitions from Q = 1 to Q = 2 to

make a histogram, but there is a strong hint of a small ∆S for transitions from 1 to 2 and

a big ∆S for transitions down.

In all of these distributions, the size of the fluctuations in ∆S for a particular kind of

proposed topological change is strongly correlated to the size of ∆S itself. This correlation

arises because ∆S comes from an average over a set of Gaussian random vectors and

because the change in the pseudofermion action is limited to a single crossing mode. (We

are also assuming that the initial and final pseudofermion chiralities are identical.) Taking

one pseudofermion and assuming that we have refreshed immediately before encountering

– 8 –
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Figure 2: Histograms of ∆S, the the height of the step at a topological boundary, from the

non-chiral data set A (a), the chiral data set A′ (b), and the fixed chirality data set B (c).

Figure 3: Histograms of ∆S from algorithm A′, where the proposed topology change is from (a)

transitions away from the running chirality and (b) into the running chirality.

a crossing, the action change per flavor is

∆S = ξ†σ

(

√

H2
σ

1

H̃2
σ

√

H2
σ − 1

)

ξσ (3.1)

– 9 –
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Figure 4: Histograms of ∆S from data set B, where the proposed topology change is from (a) 0

to 1 and (b) 1 to 0.

where 1/H2
σ is given by eq. 2.9. The average is done with respect to a weight factor which

is a pure Gaussian,

〈O〉 =

∫

dξ†dξ O exp(−ξ†ξ)
∫

dξ†dξ exp(−ξ†ξ)
, (3.2)

so if O ∼ ξ†V ξ, then 〈O〉 = TrV . The trace runs over one state, the crossing state, and so

TrV is the number V0 or

〈∆S〉 = − δCL

1 + δCL
. (3.3)

Because the measure is just a Gaussian, the squared variance is σ2 = 〈(∆S)2〉−〈∆S〉2 =

TrV 2. Again, only the crossing state contributes to V , TrV 2 = V 2
0 , and so the variance σ

is equal to the absolute value of 〈∆S〉.
Because a topological boundary can only be crossed when 〈N ·H〉2 > 2∆S, and because

〈N ·H〉2 is always on the order of unity (recall figure 1), only when ∆S is in its low-value tail

can a crossing occur. However, because the average value of ∆S is equal to its fluctuation,

this is a constant fraction of the ∆S sample. This is how the algorithm preserves detailed

balance.

4. A model calculation

To illustrate our results, we have constructed a solvable model with a discontinuity in its

spectrum. It is a simple system which is confined to a box and inside of that box has two

regions with different weights. To be specific, the partition function is

Z =

∫

dx



























∞ x < −1

detM2
L −1 < x < 0

detM2
R 0 < x < 1

∞ x > 1

(4.1)
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Figure 5: ∆S at the crossing in the model, with m = 0.1 and a single pseudofermion.

For x < 0, the weight is given by the determinant of

ML =

(

1 + m 1

1 1 + m

)

(4.2)

and for x > 0 simply by

MR =

(

1 + m 0

0 1 + m

)

. (4.3)

Besides having different determinants, the matrices do not commute, so their eigenvectors

change across the step at x = 0. Since ML has eigenvalues m and 2 + m it plays the role

of the sector of QCD with the lower eigenvalue of the Dirac operator.

We simulate this theory with the HMC algorithm of ref. [11], reflecting off the walls

and reflecting/refracting at the step at x = 0. We introduce the determinant(s) by pseudo-

fermions

(detMi)
2 =

∫

dφdφ† exp(−φ†(M †
i Mi)

−1φ). (4.4)

We allow for the possibility of Hasenbusch preconditioning. For n pseudofermion masses,

the jth mass is mj = m(n−j+1)/n.

The “gauge field” is the position variable x which we drive with a momentum p. We

want to see two things: (i) What is the width of ∆S in barrier crossings? (ii) What

affects the tunneling rate? Figure 5 shows ∆S at the crossing from a simulation in the

model with m = 0.1 and a single pseudofermion. The agreement with what we saw in

the QCD simulation — a wide distribution when the minimum eigenvalue drops, a narrow

distribution when it rises — is striking.

Now for the tunneling rate: we first compute the refraction probability in this model.

In the exact case, the rate of tunnels from right to left is

P (R → L) = NLR

∫ ∞

0
pdp exp(−p2)θ(p2 − log(det(MR/ML)2)) (4.5)
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where NLR is the number of left moving particles on the right side and the extra factor

of p in the integrand counts the flux across the barrier. The tunneling rate in the other

direction is

P (L → R) = NRL

∫ ∞

0
pdp exp(−p2) (4.6)

where NRL is the number of right movers on the left side. The theta-function is absent

because the logarithm is always negative, and the integral is just unity: the crossing rate

is 100 per cent. Of course, NLR = NRR and NRL = NLL from reflections at the ends.

Equating the tunneling rates gives NLR = NRL det(ML/MR)2 which is the statement of

detailed balance.

eq. 4.6 represents an upper bound on the tunneling rate from right to left, and the

tunneling rate for HMC will always be less than this value. Since detailed balance is obeyed,

the tunneling rate in the other direction is also suppressed.

In the stochastic case and if we are on the left side, we choose φ = M †
Lξ where ξ is

Gaussian. Then ∆S = ξ†(W − 1)ξ where W = ML(M †
RMR)−1M †

L. We can rotate the

pseudofermion integration measure to a basis which diagonalizes W and the tunneling rate

is

P (L → R) = NRL

∫ ∞

0
pdp exp(−p2)

2
∏

i=1

dξ2
i exp

(

−
∑

i

ξ2
i

)

θ

(

p2 −
∑

i

ξ2
i (λi − 1)

)

.

(4.7)

If the eigenvalues of W were all less than unity, the momentum integral would be uncon-

strained. That does not happen, however: it is easy to show that the eigenvalues of W − 1

are ε1 = (3 + 2m)/(1 + m)2 and ε2 = −(1 + 2m)/(1 + m)2. The tunneling rate is reduced

from NLR to NLR[1− ε2
1/(1+ ε1)(ε1 − ε2)]. To preserve detailed balance, the tunneling rate

in the opposite direction must be suppressed by the same amount.

Next we add n extra Hasenbusch pseudofermions. The matrix Wn (for the heaviest

pseudofermion) is identical to what we computed above; for the lighter pseudofermions,

Wj = ML(mj)M
†
L(mj+1)

−1M †
R(mj+1)(M

†
R(mj)MR(mj))

−1MR(mj+1)

×M †
L(mj+1)

−1M †
L(mj). (4.8)

The theta function becomes θ(p2−∑

ij |ξij |2(λij −1)). An analytic formula is unilluminat-

ing. However, one discovers the following result: One of the eigenvalues of Wj is always

less than unity. The other one is greater than unity, but as the number of pseudofermions

increases, this eigenvalue falls to a value which is only slightly greater than unity. Thus

the constraint on the lower end of the momentum integral relaxes and the tunneling rate

rises toward unity, the deterministic result. (For example, for n = 8 and m = 0.05 the

lower mass pseudofermions’ largest eigenvalue ranges from 1.03 to 1.11. The highest pseud-

ofermion has a largest eigenvalue of 2.5. For one pseudofermion the one relevant eigenvalue

is equal to 3.8.) More pseudofermions enhance the tunneling rate.

A graph of this behavior from a series of simulations is shown in figure 6 for m = 0.05.

Most of the change happens with the first few pseudofermions. We are not sure whether

– 12 –
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Figure 6: Crossing rate from left to right at the discontinuity from a simulation of the model for

m = 0.05.

this result has much practical use in QCD, since our algorithm is costly enough that many

pseudofermions are simply too expensive.

The average (stochastic) ∆S is related to its variance as above. The eigenvalues of W

also give us the value of ∆S at the crossing point: for n pseudofermions the result is

∆SL→R =
∑

n

∑

i

(λni − 1) (4.9)

and

∆SR→L =
∑

n

∑

i

(λ−1
ni − 1). (4.10)

Thus with more pseudofermions, as λni falls toward 1, the means of both distributions

shrink. This is clearly illustrated with a plot of ∆S for eight pseudofermions, figure 7.

The conclusion of this model study is that the asymmetric distributions we observe do

not affect detailed balance. The value of ∆S is an indirect measure of the expected tun-

neling rate, through the eigenvalues of the ratio of pseudofermion matrices at the crossing

point. More pseudofermions should enhance the refraction rate.

The model does not directly address the question of whether the chiral algorithm

should have a higher tunneling rate than the nonchiral algorithm. However, in simulations

restricted to the opposite chirality sector the shift in the spectrum is smaller than in the

same chirality sector. This amounts to a larger value of m in the model. With bigger

m the tunneling rate even with a single pseudofermion is closer to its deterministic value.

This plus the use of the exact weight for the zero mode suggests suggests that the chiral

algorithm will evolve more efficiently than the usual nonchiral HMC.
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Figure 7: ∆S at the crossing in the model, with m = 0.1 and 8 pseudofermions.

5. Conclusion

We have discussed a method to simulate an arbitrary number of flavors of overlap fermions

in hybrid Monte Carlo. Besides removing the constraint on flavor number from HMC, the

algorithm has some practical features. It avoids the problems in the simulation associated

with zero-modes. In sectors of non-vanishing topology, this facilitates and significantly

stabilizes the inversion.

As far as we know, this method is only applicable to simulations with the overlap

action, since it needs the Ginsparg-Wilson relation to relate the spectrum of D to that of

D†D, that D†D commutes with γ5, and that changes of topology can be observed from

zero crossings of the kernel action.
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